压缩式热泵是以消耗一部分高质能(机械能或电能)为代价致热的,如图3-1所示。低沸点工质通过压缩机压缩,消耗外功W,使工质的压力和温度升高。由于它的温度高于供热所需的温度TH,让它通过冷凝器向室内供出热量Q1而本身被冷凝。然后通过膨胀阀节流降压,同时温度也降低。由于它的温度将低于采暖热源的温度TL(一般为环境温度T),在蒸发器中吸收外界热量Q2而蒸发。蒸气再回到压缩机继续压缩,完成一个循环。图3-1压缩式热泵系统1-压缩机;冷凝器;膨胀阀;蒸发器=由上式可知,如果(T1-T2)越小,或T2/T1越大,则越大。
无锡征图钢业有限公司
热轧精密钢管用连铸圆管坯板坯或初轧板坯作原料,经步进式加热炉加热,高压水除鳞后进入粗轧机,粗轧料经切头、尾、再进入精轧机,实施计算机 控制轧制,终轧后即经过层流冷却和卷取机卷取、成为直发卷。直发卷的头、尾往往呈舌状及鱼尾状,厚度、 宽度精度较差,边部常存在浪形、折边、塔形等缺陷。其卷重较重、钢卷内径为760mm。将直发卷经切头、 切尾、切边及多道次的矫直、平整等精整线后,再切板或重卷,即成为:热轧钢板、平整热轧钢卷、纵切带等产品。热轧精整卷若经酸洗去除氧化皮并涂油后即 成热轧酸洗板卷。(1)合理选材。对精密复杂模具应选择材质好的微变形模具钢(如空淬钢),对碳化物偏析严重的模具钢应进行合理锻造并进行调质热,对较大和无法锻造模具钢可进行固溶双细化热。
效果四高线通过实行优化后的生产工艺,含Ti高强度焊丝钢物理性能波动下降30%,得到的金相组织主要为铁素体+珠光体+少量贝氏体组织,见所示。盘条具有良好的塑性,部分中等含钛量焊丝钢可以免除退火工艺,降低了劳动强度和生产成本。结论根据不同Ti含量对钢的组织性能的影响,结合现有工艺设备,制定工艺优化点。通过落实优化措施,有效降低了含Ti焊丝盘条的物理性能波动,部分产品节省了退火工序,降低了劳动强度和生产成本。
另外。方矩管热还具有以下三个优点:(一)尺寸稳定性对于髙精度的方矩管。其要求的精度髙。故必须保持尺寸的稳定性。由于在空气中进行校直。冷却速度慢。因此对奥氏体具有稳定化的作用。会增加组织中残余奥氏体方矩管的数量。故必须进行冷。(二)减少淬火变形由于方矩管细长。故淬硬过程中容易变形。故必须严格控制其变形。热是十分关键的工序。在淬火冷却过程中。利用过冷奥氏体的塑性进行及时校直。这是确保其合格率提高的关键步骤。为此应进行热浴淬火或在油中冷却一定时间提出热校直.同时应在加热时进行吊挂加热。以减少淬火的变形。对于高精度的导轨。为减少变形则进体渗氮或离子渗氮等。(三)高硬度方矩管主要承受接触疲劳载荷。故必须具有高的硬度。因此应进行淬火、或表面淬火或化学热等。随后进行低温回火。
(2)模具结构设计要合理,厚薄不要太悬殊,形状要对称,对于变形较大模具要掌握变形规律,预留余量,对于大型、精密复杂模具可采用组合结构。
(3)精密复杂模具要进行预先热,消除机械过程中产生的残余应力。
(4)合理选择加热温度,控制加热速度,对于精密复杂模具可采取缓慢加热、预热和其他均衡加热的方法来减少模具热变形。
(5)在保证模具硬度的前提下,尽量采用预冷、分级冷却淬火或温淬火工艺。
(6)对精密复杂模具,在条件许可的情况下,尽量采用真空加热淬火和淬火后的深冷。
(7)对一些精密复杂的模具可采用预先热、时效热、调质氮化热来控制模具的精度。
(8)在修补模具砂眼、气孔、磨损等缺陷时,选用冷焊机等热影响小的修复设备以避免修补过程中变形的产生。
另外,正确的热工艺操作(如堵孔、绑孔、机械固定、适宜的加热方法、正确选择模具的冷却方向和在冷却介质中的运动方向等)和合理的回火热工艺也是减少精密复杂模具变形的有效措施。
德国 钢公司在总结希尔萨公司和其它一些公司生产线的经验基础上,在杜伊斯堡厂建成新一代薄板坯连铸连轧生产线。该生产线于1999年4月投产运行,生产线年产能力 厚0-35mm(日后还可生产更薄规格产品),钢种为碳素钢,该厂除采用间断式生产工艺(即连铸机生产的薄板坯切成47m长,分块进入隧道式均热炉、均热后再分块进入轧机)外,还为采用半无头轧制和无头轧制工艺留有余地,并积极创造条件以新工艺进行生产。
如果先利用燃烧产生的高温热能发电,然后利用电能驱动热泵从周围环境中吸收低品位的热能,适当提高温度再向建筑供热,就可以充分利用中的高品位能量,大大降低用于供热的一次能源消耗。供热用热泵的性能系数,即供热量与消耗的电能之比,现在可达到3-4;火力发电站的效率可达35-58%(高值为燃气联合循环电站)。采用发电再用热泵供热的方式,在现有 技术条件下一次能源利用率可以达到2%以上。采用热泵技术为建筑物供热可大大降低供热的消耗,不仅节能,同时也大大降低了燃烧矿物而引起的CO2和其他污染物的排放。
最新资讯
最新新闻